रसायन विज्ञान

Exam Syllabus

Information
Chemistry Syllabus 

Atoms, Molecules and Chemical Arithmetic : Dalton’s atomic theory; Gay Lussac’s law of gaseous volume; Avogadro’s Hypothesis and its applications. Atomic mass; Molecular mass; Equivalent weight; Valency; Gram atomic weight; Gram molecular weight; Gram equivalent weight and mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept) involving common oxidation – reduction, neutralization, and displacement reactions; Concentration in terms of mole fraction, molarity, molality and normality. Percentage composition, empirical formula and molecular formula; Numerical problems.

Atomic Structure : Concept of Nuclear Atom – electron, proton and neutron (charge and mass), atomic number. utherford’s model and its limitations; Extra nuclear structure; Line spectra of hydrogen atom. Quantization of energy (Planck’s equation E = hν); Bohr’s model of hydrogen atom and its limitations, Sommerfeld’s modifications (elementary idea); The four quantum numbers, ground state electronic configurations of many electron atoms and mono – atomic ions; The Aufbau Principle; Pauli’s Exclusion Principle and Hund’s Rule. Dual nature of matter and light, de Broglie's relationship, Uncertainty principle; The concept of atomic orbitals, shapes of s, p and d orbitals (pictorial approach).

Radioactivity and Nuclear Chemistry : Radioactivity α-, β-, γ rays and their properties; Artificial transmutation; Rate of radioactive decay, decay constant, half-life and average age life period of radio-elements; Units of radioactivity; Numerical problems. Stability of the atomic nucleus – effect of neutron-proton (n/p) ratio on the modes of decay, grou displacement law, radioisotopes and their uses (C, P, Co and I as examples) isobars and isotones (definition and examples), elementary idea of nuclear fission and fusion reactions.

The Periodic Table and Chemical Families : Modern periodic law (based on atomic number); Modern periodic table based on electronic configurations, groups (Gr. 1-18) and periods. Types of elements – representative (s-block and p- block), transition (d-block) elements and inner transition (f-block/lanthanides and actinides) and their general characteristics. Periodic trends in physical and chemical properties – atomic radii, valency, ionization energy, electron affinity, electronegativity, metallic character, acidic and basic characters of oxides and hydrides of the representative elements (up to Z = 36). Position of hydrogen and the noble gases in the periodic table; Diagonal relationships.

Chemical Bonding and Molecular Structure : Valence electrons, the Octet rule, electrovalent, covalent and coordinate covalent bonds with examples; Properties of electrovalent and covalent compounds. Limitations of Octet rule (examples); Fajans Rule. Directionality of covalent bonds, shapes of poly – atomic molecules (examples); Concept of hybridization of atomic orbitals (qualitative pictorial approach): sp, sp2 , sp3 and dsp2 . Molecular orbital energy diagrams for homonuclear diatomic species – bond order and magnetic properties. Valence Shell Electron Pair Repulsion (VSEPR) concept (elementary idea) – shapes of molecules. Concept of resonance (elementary idea), resonance structures (examples). Elementary idea about electronegativity, bond polarity and dipole moment, inter- and intra-molecular hydrogen bonding and its effects on physical properties (mp, bp and solubility); Hydrogen bridge bonds in diborane.

Coordination Compounds : Introduction, Double salts and complex salts, coordination compounds (examples only), Werner's theory, coordination number (examples of coordination number 4 and 6 only), colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds.

Solid State : Classification of solids based on different binding forces: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea). Unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, packing efficiency, voids, number of atoms per uni cell in a cubic unit cell, point defects, electrical and magnetic properties. Band theory of metals, conductors, semiconductors and insulators and n & p type semiconductors.

Liquid State : Vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivations). 

Gaseous State : Measurable properties of gases. Boyle’s Law and Charles Law, absolute scale of temperature, kinetic theory of gases, ideal gas equation – average, root mean square and most probable velocities and their relationship with temperature. Daltons Law of partial pressure, Grahams Law of gaseous diffusion. Deviations from ideal behavior. Liquefaction of gases, real gases, van der Waals equation; Numerical problems.

Enter Your Details


Back to Top

Enter Your Details for Feedback


      Refresh